Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing

Bart Nelissen^b, Philippe Mordant^a, Jean-Luc Jonniaux^a, Rupert De Wachter^b, André Goffeau^a,*

^aUnité de Biochimie Physiologique, Faculté des Sciences Agronomiques, Université Catholique de Louvain, Place Croix du Sud 2-20, B-1348 Louvain-la-Neuve, Belgium ^bDepartement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium

Received 16 November 1995

Abstract From the approximately 5000 open reading frames presently identified by systematic sequencing of the yeast genome, 100 Saccharomyces cerevisiae transport proteins belonging to the major facilitator superfamily (MFS), were assigned to 17 families on the basis of extensive database searches and binary comparisons. These families include multidrug resistance proteins and transport proteins for sugars, amino acids, uracil/allantoin, allantoate, phosphate, purine/cytosine, proteins, peptides, potassium, sulfate, and urea. Four new families of unknown function have been identified. For the sugar and amino acid transport proteins, alignments were made and phylogenetic trees were constructed allowing the identification of several clusters of proteins presumably exhibiting similar transport functions.

Key words: Transport protein; Yeast genome; Major facilitator superfamily (MFS)

1. Introduction

Transport proteins can be classified into several superfamilies, the members of which are found in all living species from mycoplasma to man. One of these transport protein superfamilies, is the major facilitator superfamily or MFS [1], characterized by two structural units of a 6 transmembrane-spanning helical segment, connected by a cytoplasmic loop, resulting in proteins with about 500 to 600 amino acids and 12 transmembrane helices. The proteins of the MFS superfamily have been divided into six families [2]. Other transport protein families that are characterized by a structural motif of 12 transmembrane-spanning helical segments include the amino acid-polyamine-choline (APC) family, and the sodium: solute symporter (SSF) family [2].

The sequence of the Saccharomyces cerevisiae genome is almost completed [3-5]. Because this is the first complete eukaryote sequence becoming available, Saccharomyces cerevisiae is very well suited for a study of the function and classification of transport proteins, which may serve as a model for other eukaryotes.

In this paper we have classified the 12 transmembrane-spanning transport proteins of the major facilitator superfamily. A preliminary grouping has been based on database searches of 12 transmembrane-spanning query sequences. The consistency of these groupings into families has been investigated by binary

*Corresponding author. Fax: (32) (10) 47 38 72. E-mail: GOFFEAU@FYSA.UCL.AC.BE

comparisons of all retrieved amino acid sequences. Multiple alignments were made for the largest groups in order to study the relationships between the constituent proteins by tree construction

2. Methods

2.1. Classification into families

The 1884 non-redundant open reading frames from the Saccharomyces cerevisiae chromosomes I, II, III, V, VIII, IX, XI and part of other chromosomes, available in March 1995, were retrieved from the EMBL, GenBank, PIR, SwissProt, MIPS, SYDB, and YPD databases. These sequences were first screened according to their number of transmembrane spans as predicted by the KKD algorithm [6], with the threshold value of 15 for the peripheral/integral odds as described by [3,4]. To be sure to include all 12 transmembrane-spanning proteins, all proteins with 8 or more predicted transmembrane spans were used.

A BLAST [7] search of all amino acid sequences with 8 or more predicted transmembrane spans was carried out by the BLAST e-mail server version 1.4 at the National Center for Biotechnology Information (Bethesda, MD). All sequences producing high-scoring segment pairs with a $P(N) < 10^{-9}$ were considered to be closely related. All query sequences that had at least one closely related sequence in common, were placed in the same family. Those families that did not belong to the major facilitator superfamily (MFS) as deduced from their function in the BLAST results, e.g. the ATP-binding cassette (ABC) superfamily, were excluded from further analysis. All closely related yeast sequences that did belong to the MFS families but that were not yet in our dataset were retrieved. Starting from this dataset, the validity of each family was investigated by binary comparison of all protein sequences with each other. These binary comparisons were done with PRSS, a program for testing the significance of a protein sequence similarity, which belongs to the FASTA [8,9] software package version 1.7. For each comparison, 100 shuffles were done. A protein sequence was assigned to a family when its PRSS P-value with at least one member of the family was below 10⁻⁹ (Goffeau et al., unpublished results). When suspected, frame shifts were detected and corrected with the software package DNA Strider version 1.2 (Centre d'Etudes Nucleaires de Saclay, France).

2.2. Alignment of amino acid sequences

The amino acid sequences of the sugar and amino acid permease family were aligned with the multiple alignment program PILEUP, which belongs to the Wisconsin Sequence Analysis Package [10], version 8.0.

2.3. Phylogenetic tree construction

On the basis of the alignments dissimilarity matrices were calculated. Dissimilarities were converted into distances, assuming [11,12] that the rate of amino acid substitution follows the Poisson distribution, using the equation $D_{AB} = -\ln(1-S)$, where D is the evolutionary distance between two proteins A and B, and S the fraction of different amino acids (dissimilarity) between two sequences. Phylogenetic trees were constructed using the neighbor-joining method [13]. Distance matrix calculation and tree construction were done with the software package TREECON for Windows [14] version 1.1.

Sugar permeases

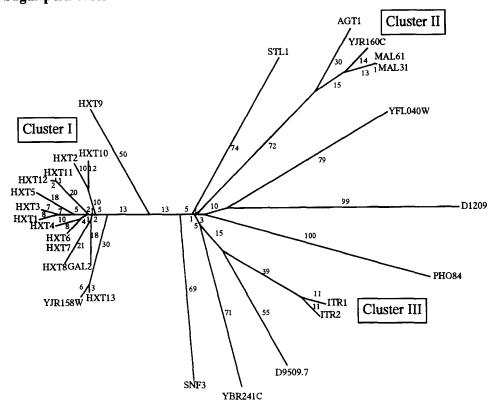


Fig. 1. Phylogenetic tree of the sugar permeases belonging to the MFS. Each number corresponds to the phylogenetic distance D multiplied by a factor 100. Proteins are considered to belong to the same cluster if $D \le 0.9$ (arbitrary value). The exact composition of each cluster can be found in Table 1.

3. Results

3. '. Division into families

After prediction of the number of transmembrane spans, a BLAST search, and retrieval of the related proteins not yet in our dataset, 78 proteins belonging to the MFS were assigned to 16 families. Two frame shifts, probably the result of sequencing errors, were corrected. This resulted in joining ORFs YCL070C, YCL071C, and YCL073C into YCL070-73C, and in joining YIL170W and YIL171W into HXT12. Binary comparisons of all amino acid sequences finally resulted in 17 families, comprising 75 sequences.

In order to update the composition of these families, a new BLAST search and PRSS binary comparisons were carried out in October 1995. This resulted in the same 17 families comprising 100 sequences given in Table 1.

3.2. Phylogenetic trees

After alignment of the protein sequences of the sugar and amino acid permeases, phylogenetic trees were constructed as illustrated in Figs. 1 and 2.

4. Discussion

4.1. Sugar permeases

The family of sugar permeases comprises 28 representatives. On the basis of the phylogenetic tree, 21 representatives can be assigned to three different clusters, while the remaining repre-

sentatives have no close relatives (Fig. 1, Table 1). Cluster I is the largest cluster and contains 15 proteins, mainly hexose/ glucose permeases (HXT1-HXT13). This is surprising, even though glucose is an important substrate for Saccharomyces cerevisiae. The remaining representatives are a galactose permease (GAL2) and a protein (YJR158W) that is closely related to HXT13 and is thus probably a hexose/glucose permease. Cluster II contains 4 transport proteins, which include two maltose permeases (MAL31 and MAL61), one alpha-glucoside permease (AGT1), and a protein (YJR160C) that is related to the two maltose permeases. Cluster III contains 2 myo-inositol permeases (ITR1 and ITR2). The unclustered proteins consist mainly of permeases with an unknown substrate. Remarkably, the phosphate permease PHO84 belongs to this family of sugar permeases and not to another family that contains the phosphate permease PHO87.

4.2. Amino acid permeases

The family of amino acid permeases is the second largest family and comprises 19 representatives. As can be seen in the phylogenetic tree, 12 representatives can be assigned to 2 clusters (Fig. 2, Table 1). Cluster I contains 9 proteins, including a general amino acid permease (GAP1), branched amino acid permeases (BAP2 and YD9609.02), glutamine permeases (GNP1 and YCL025C), a histidine permease (HIP1), a tryptophan permease (SCM2), and a valine/leucine/isoleucine/tyrosine/tryptophan permease (TAT1). The functions of proteins YD6909.02 and YCL025C can be deduced from their relation-

ship with BAP2 and GNP1 respectively, but L0555 is only loosely related to GAP1 and no function can be deduced. Cluster II contains 3 proteins that are basic amino acid permeases (APL1, CAN1, and LYP1). The unclustered proteins consist of a choline permease (CTR1), a proline permease (PUT4), and a GABA (4-aminobutyric acid) permease (UGA4). The remain-

Table I Families identified within the Major Facilitator Superfamily by

BLAST and PRSS			
Gene name	Access. Function		
(synonyms) ^a	Nob		
	SUGAR PE	DMEACEC	
	SUGARTE	RWEASES	
CLUSTER I			
GAL2 (IMP1)	P13181	galactose permease	
HXT1 (YHR094C)	P32465	glucose permease, low-affinity	
HXT2 (YM8270.15)	P23585	glucose permease, modulated affinity	
HXT3	P32466	glucose permease, low-affinity	
HXT4 (LGT1,	P32467	glucose permease, moderate- to	
RAG1, YHR092C)		low- affinity	
HXT5 (YHR096C)	P38695	hexose permease	
HXT6	P39003	hexose permease, high-affinity	
HXT7	P39004	hexose permease, high-affinity	
HXT8 (YJL214W, HRA569)	P40886	similar to hexose permease HXT4	
HXT9 (HXT 14,	P42833	hexose permease	
N0345)	1 74000	nerose permease	
HXT10 (YFL011W)	P43581	hexose permease	
HXT11 (YJL219W,	P40885	glucose permease, low-affinity	
HRC567, LGT3)			
HXT12 (YIL170W,	P40441	similar to sugar permeases	
YI9402.06B)	P40440	(frame shift: YIL170W and	
(YIL171W,		YIL171W joined)	
YI9402.06A) HXT13 (YEL069C,	P39924	hexose permease	
HXT8)	F37724	nexose permease	
YJR158W	Z49658x1	similar to sugar permeases	
CLUSTER II			
AGT1	L47346x1	alpha-glucoside permease	
MAL31 (MALK3T,	P38156	maltose permease	
YBR2116,			
YBR298C) MAL61 (MAL6T)	P15685	maltose permease	
YJR160C	Z49660x1	similar to sugar permeases	
TJRTOOC	24700071	Similar to sugar permeases	
CLUSTER III			
ITR1	P30605	myo-inositol permease (major)	
ITR2 (HRB612)	P30606	myo-inositol permease (minor)	
UNCLUSTERED			
D1209	X83276x2	similar to sugar permeases	
D9509.7	U32274x7	similar to ITR1	
PHO84	P25297	phosphate permease, high-	
(YM7056.03)		affinity	
SNF3	P10870	similar sugar permeases	
STL1	P39932	sugar permease	
YBR241C	P38142	similar to sugar permeases	
(YBR1625) YFL040W	P43562	similar to sugar permeases	
11204011	140002	similar to ougar permouses	
A	MINO ACID	PERMEASES	
CLUSTER I			
BAP2 (YBR068C,	P38084	leucine / valine / isoleucine	
YBR0629)	D101.45	permease	
GAP1 (YKR039W)		general amino acid permease	
GNP1	U33057x14	glutamine permease, high- affinity	
HIP1 (G7572)	P06775	histidine permease	
L0555	Z47973x10	similar to GAP1	
TAT2 (SCM2,	P38967	tryptophan permease, high-	
TAP2, LTG3)		affinity	

ing proteins (YBR132C, YD8358.14, YFL055W, and YKL174C) belong to the amino acid permease family, but their exact substrate is not known.

4.3. Multidrug resistance proteins

The multidrug resistance proteins (MDR) are subdivided

Table I (continued)			
Gene name	Access.	Function	
(synonyms) ^a	No⁵		
TAT1 (VAP1,	P38085	valine / leucine / isoleucine /	
TAP1, YBR710,		tyrosine / tryptophan permease	
YBR069C)		, ,, ,	
YCL025C (YCC5)	P25376	similar to GNP1	
PAP1 (YD9609.0)	P41815	similar to amino acid	
		permeases	
CLUSTER II			
ALP1 (APL1)	P38971	similar to basic amino acid	
		permeases CAN1 and LYP1	
CAN1 (YEL063C)	P04817	arginine / lysine / ornithine	
T Trond	D20 105	permease	
LYP1	P32487	lysine permease, high-affinity	
UNCLUSTERED			
CTR1 (HNM1)	P19807	choline permease	
PUT4	P15380	proline permease, high-affinity	
UGA4	P32837	GABA-specific permease,	
		high-affinity	
YBR132C	P38090	similar to amino acid	
(YBR1007)		permeases	
YD8358.14	Z50046x14	similar to amino acid	
		permeases	
YFL055W	P43548	similar to amino acid permeases	
YKL174C	P36029	similar to CTR1 permease	
(YKL639)		•	
MULTIDRUC	RESISTANC	CE PROTEINS, FAMILY 1	
HOL1	L42348x1	similar to YBR043C and	
		YHR048C	
P9584.7	U28371x3	similar to YBR008C	
YBR008C	P38124	similar to multidrug permeases	
(YBR0120)			
YBR043C	P38227	similar to multidrug permeases	
(YBR0413)			
YBR180W	P38125	similar to multidrug permeases	
(YBR1242)	D00000		
YHR048W	P38776	similar to multidrug permeases	
YIL120W	P40475	similar to multidrug permeases	
(18277.09)	D40474	VII 1201V	
YIL121W	P40474	similar YIL120W	
(I8277.08) YNL1613	U12141x3	similar to multidrug permeases	
MULTIDRUG	G RESISTANC	CE PROTEINS, FAMILY 2	
ATR1 (SNQ1, YM83390.03)	P13090	aminotriazole resistance protein	
ORF 886916	X87941x8	similar to multidrug permeases	
SGE1 (NOR1,	P33335	crystal violet resistance protein	
P9677.3)	- 55555	organia violet resistante protein	

ATR1 (SNQ1, YM83390.03)	P13090	aminotriazole resistance protein
ORF_886916	X87941x8	similar to multidrug permeases
SGE1 (NOR1,	P33335	crystal violet resistance protein
P9677.3) YBR293W	P38358	similar to multidrug permeases
(YBR2109)	100011	2 v2 v6
YCL069W	P25594	similar to bacterial multidrug
		resistance proteins
YCL070-73C	P25596	similar to YKR106 (frame shift:
(YCL070C,		YCL070C, YCL071C, and
YCL071C,		YCL073C joined)
YCL073C)		
YD9727.14	Z48758x14	similar to multidrug permeases
YEL065W	P39980	similar to multidrug permeases
YHL040C	P38731	similar to YKR106W
YHL047C	P38724	similar to YKR106W
YKR105C	P36172	similar to SGE1

Table I
(continued)

Gene name (synonyms) ^a	Access. No ^b	Function
YKR106W	P36173	similar to YCL070-73C
YM8021.05	Z49259x15	similar to multidrug permeases
YM9582.13	Z49259x15	similar to multidrug permeases

TIDAOTE	/ A T T	ANTOIN	DEDAGE	ACTO
HIVACII	/ALL	ANTUIN	PERME	ASES.

DAL4 (YIR028W)	Q04895	allantoin permease
FUR4 (YBRO303,	P05316	uracil permease
YBR021W)		
L8083.2	U19027x14	
YBL042C	P38196	similar to FUR4 and DAL4
(YBL0406)		

ALLANTOATE PERMEASES

DAL5 (UREP1, YJR152W)	P15365	allantoate permease
L0578	Z47973x16	similar to DAL5
YAL067C	P39709	similar to DAL5
YCR028C	P25621	similar to DAL5
YIL166C	P40445	similar to DAL5
(YI9402.09)		

PHOSPHATE PERMEASES

N2052	P27514	similar to PHO87
PHO87 (YCR524,	P25360	phosphate permeas
YCR037C)		
YJL198W (J0336)	P39535	similar to PHO87

PURINE/CYTOSINE PERMEASES

FCY2 (YER056C) YER060W	P17064 P40039	cytosine / purine permease similar to FCY2
	PROTEIN	PERMEASES
SEC61 (L3502.5)	P32915	component of ER protein- translocation complex
YBR283C (YBR2020)	P38353	similar to SEC61
	PEPTIDE I	PERMEASES

P32901 peptide permease

PTR2 (YKR413C,	P32901	peptide permeas
YKR093W)		

POTASSIUM PERMEASES

TRKI (YJL129C)	P12085	affinity
TRK2 (RPD2,	P28584	potassium permease, moderate
YKR050W)		affinity

SULFATE PERMEASES

SUL1 (SFP, YBR2110,	P38359	sulfate permease, high-affinity
YBR294W)		
YP9723.03 (LPZ3C)	Z48951x3	similar to high affinity sulfate

UREA PERMEASES

transporter

DUR3 (YHL016C)	P33413	urea permease
----------------	--------	---------------

into two families: MDR 1 and MDR 2 (Table 1), which comprise 9 and 24 representatives respectively. This slightly modifies the conclusions of a recent study of Goffeau et al. (unpublished results), in which all multidrug resistance proteins are in one family, divided into 3 clusters. Taking into account the

Table I

(continued)				
Gene name (synonyms) ^a	Access. No ^b	Function		
UNKN	IOWN FUN	ICTION, FAMILY 1		
SYG1 (YIL047C)	P40964	similar to N2052		
UNKN	IOWN FUN	ICTION, FAMILY 2		
PTM1 (YKL252,	P32857	similar to YHL017W		
YKL039W) YHL017W	P38745	similar to PTM1		
UNKN	IOWN FUN	ICTION, FAMILY 3		
YBL089W (YBL0703)	P38176	similar to YER119C		
YEL064C	P39981	similar to YBL089W		
YER119C	P40074	similar to YBL089W		
YIL088C (19910.08)	P40501	similar to YBL089W		
UNKN	IOWN FUN	ICTION, FAMILY 4		
JEN1 (YKL217W)	P36035	similar to bacterial proline / betaine and mammalian Na ⁺ /carboxylic acid permease		

families are based on phylogenetic trees. * Gene names and synonyms are according to the YPD database at URL http://www.proteome.com/YPDhome.html . bAccession numbers are from SwissProt if started by P or Q, otherwise from GenBank

number of predicted transmembrane spans (Goffeau et al., unpublished results), which is 12 for MDR 1 and 14 for MDR 2, it seems that the assignment of the multidrug resistance proteins to two families instead of one family is correct.

4.4. Other permease families with known function

As can be seen in Table 1, the uracil/allantoin permease family comprises 4 representatives. The allantoin permease (DAL4) and the uracil permease (FUR4) are more closely related to each other than to YBL042W and L8083.2 (unpublished results). The allantoate permease family contains 5 representatives. The allantoate permeases DAL5 and L0578 are more related to each other than to the other members, and so are YCR028C and YAL067C (unpublished results). The phosphate permease family contains 3 representatives, N2052, PHO87, and YJL198W, but not PHO84 which is a member of the sugar permease family. Based on the BLAST results, SYG1 also belongs to the phosphate permease family, but it was excluded on the basis of the PRSS results and put in a separate family with unknown function. The purine/cytosine, protein, potassium, and sulfate permease families contain only 2 representatives each, while the peptide and urea permease families consist of only one member each.

4.5. Permease families with unknown function

The families listed as unknown function bare no similarity to proteins with a known function in yeast or other organisms. Four such families are listed in Table 1 with 1, 2, 4, and 1 member(s).

5. Conclusions

The present work demonstrates the power of the phylogen-

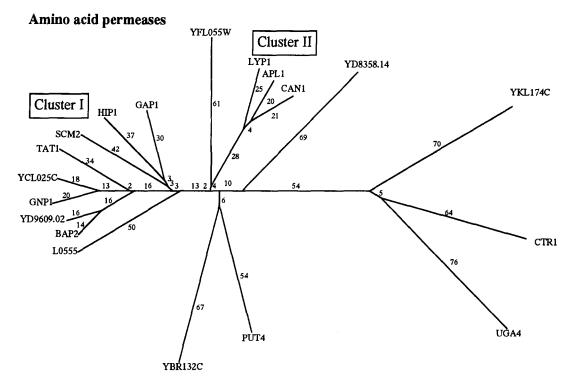


Fig. 2. Phylogenetic tree of the amino acid permeases belonging to the MFS. Conventions as in Fig. 1.

etic analysis of membrane proteins, pioneered by [2], as applied to the data generated by the systematic sequencing of the yeast genome [15]. This approach has allowed to distinguish 17 families within the yeast members of the MFS proteins. This is a considerable increase in the number of MFS families which so far was estimated to be 6 for all species combined [1]. At completion of this study (October 1995) approximately 5000 yeast ORFs were available, whereas the complete genome is estimated to comprise 6400 ORFs [3]. Taking into account that 100 MFS proteins were identified in the present study, the total number in the yeast genome can be estimated at 128. The additional members still to be revealed will most probably belong to the 17 families presently assigned. Our approach has allowed us to suggest functions by clustering, e.g. YJR158W which clusters with the hexose/glucose permeases in the sugar permease family. Interestingly, 4 families have been found with an unknown function (Unknown 1-4 in Table 1). Even within families with a known function, it has not been possible to suggest a function for all proteins by clustering, e.g. YFL040W in the sugar permease family.

While this work was in progress we became aware of a classification of yeast transport proteins by Bruno André (personal communication).

Acknowledgements: This research was supported by the Programme on Interuniversity Poles of Attraction of the Office for Scientific, Cultural and Technical Affairs of the Belgian State (contracts no. 18 and 23).

References

- Marger, M.D. and Saier, M.H. (1993) Trends Biochem. Sci. 18, 13-20.
- [2] Saier, M.H. (1994) Microbiol. Rev. 58, 71-93.
- [3] Goffeau, A., Slonimski, P., Nakai, K. and Risler, J.-L. (1993) Yeast 9, 691-702.
- [4] Goffeau, A., Nakai, K., Slonimski, P. and Risler, J.-L. (1993) FEBS Lett. 325, 112-117.
- [5] Williams, N. (1995) Science 268, 1560-1561.
- [6] Klein, P., Kanehisha, M. and DeLisi, C. (1985) Biochim. Biophys. Acta 815, 468-476.
- [7] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) J. Mol. Biol. 215, 403–410.
- [8] Pearson, W.R. (1990) Methods Enzymol. 183, 63-68.
- [9] Pearson, W.R. and Lipman, D.J. (1988) Proc. Natl. Acad. Sci. USA 85, 2444–2448.
- [10] Wisconsin Sequence Analysis Package, Version 8 (1994) Program Manual, Genetics Computer Group, 575 Science Drive, Madison, WI 53711, USA.
- [11] Zuckerkandl, E. and Pauling, L. (1965) in: Evolving genes and proteins (Bruson, V. and Vogel, H.J., Eds.) pp. 97-166, Academic Press, New York.
- [12] Dickerson, R.E. (1971) J. Mol. Evol. 1, 26-45.
- [13] Saitou, N. and Nei, M. (1987) Mol. Biol. Evol. 4, 406-425.
- [14] Van de Peer, Y. and De Wachter, R. (1994) Comput. Applic. Biosci. 10, 569-570.
- [15] Goffeau, A. (1994) Nature 369, 101-102.